Basic indexes and Aluthge transformation for 2 by 2 matrices
نویسندگان
چکیده
منابع مشابه
Convergence of iterated Aluthge transform sequence for diagonalizable matrices II: λ-Aluthge transform
Let λ ∈ (0, 1) and let T be a r × r complex matrix with polar decomposition T = U |T |. Then, the λAluthge transform is defined by ∆λ (T ) = |T | U |T |. Let ∆nλ(T ) denote the n-times iterated Aluthge transform of T , n ∈ N. We prove that the sequence {∆nλ(T )}n∈N converges for every r × r diagonalizable matrix T . We show regularity results for the two parameter map (λ, T ) 7→ ∆∞λ (T ), and w...
متن کاملAluthge transforms of 2-variable weighted shifts
We introduce two natural notions of multivariable Aluthge transforms (toral and spherical), and study their basic properties. In the case of 2-variable weighted shifts, we first prove that the toral Aluthge transform does not preserve (joint) hyponormality, in sharp contrast with the 1-variable case. Second, we identify a large class of 2-variable weighted shifts for which hyponormality is pres...
متن کاملFurther inequalities for operator space numerical radius on 2*2 operator matrices
We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$, when $X$ is a numerical radius operator space. These inequalities contain some upper and lower bounds for operator space numerical radius.
متن کاملA NOTE VIA DIAGONALITY OF THE 2 × 2 BHATTACHARYYA MATRICES
In this paper, we consider characterizations based on the Bhattacharyya matrices. We characterize, under certain constraint, dis tributions such as normal, compound poisson and gamma via the diago nality of the 2 X 2 Bhattacharyya matrix.
متن کاملConvergence of iterated Aluthge transform sequence for diagonalizable matrices
Given an r × r complex matrix T , if T = U |T | is the polar decomposition of T , then, the Aluthge transform is defined by ∆ (T ) = |T |U |T |. Let ∆n(T ) denote the n-times iterated Aluthge transform of T , i.e. ∆0(T ) = T and ∆n(T ) = ∆(∆n−1(T )), n ∈ N. We prove that the sequence {∆n(T )}n∈N converges for every r× r diagonalizable matrix T . We show that the limit ∆∞(·) is a map of class C∞...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2008
ISSN: 1331-4343
DOI: 10.7153/mia-11-51