Basic indexes and Aluthge transformation for 2 by 2 matrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of iterated Aluthge transform sequence for diagonalizable matrices II: λ-Aluthge transform

Let λ ∈ (0, 1) and let T be a r × r complex matrix with polar decomposition T = U |T |. Then, the λAluthge transform is defined by ∆λ (T ) = |T | U |T |. Let ∆nλ(T ) denote the n-times iterated Aluthge transform of T , n ∈ N. We prove that the sequence {∆nλ(T )}n∈N converges for every r × r diagonalizable matrix T . We show regularity results for the two parameter map (λ, T ) 7→ ∆∞λ (T ), and w...

متن کامل

Aluthge transforms of 2-variable weighted shifts

We introduce two natural notions of multivariable Aluthge transforms (toral and spherical), and study their basic properties. In the case of 2-variable weighted shifts, we first prove that the toral Aluthge transform does not preserve (joint) hyponormality, in sharp contrast with the 1-variable case. Second, we identify a large class of 2-variable weighted shifts for which hyponormality is pres...

متن کامل

Further inequalities for operator space numerical radius on 2*2 operator ‎matrices

‎We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$‎, ‎when $X$ is a numerical radius operator space‎. ‎These inequalities contain some upper and lower bounds for operator space numerical radius.

متن کامل

A NOTE VIA DIAGONALITY OF THE 2 × 2 BHATTACHARYYA MATRICES

In this paper, we consider characterizations based on the Bhattacharyya matrices. We characterize, under certain constraint, dis tributions such as normal, compound poisson and gamma via the diago nality of the 2 X 2 Bhattacharyya matrix.

متن کامل

Convergence of iterated Aluthge transform sequence for diagonalizable matrices

Given an r × r complex matrix T , if T = U |T | is the polar decomposition of T , then, the Aluthge transform is defined by ∆ (T ) = |T |U |T |. Let ∆n(T ) denote the n-times iterated Aluthge transform of T , i.e. ∆0(T ) = T and ∆n(T ) = ∆(∆n−1(T )), n ∈ N. We prove that the sequence {∆n(T )}n∈N converges for every r× r diagonalizable matrix T . We show that the limit ∆∞(·) is a map of class C∞...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2008

ISSN: 1331-4343

DOI: 10.7153/mia-11-51